Natural Computing and Beyond

Yasuhiro Suzuki Toshiyuki Nakagaki (Eds.)

Natural Computing and Beyond

Springer
This book is a joint publication of the Winter School of Hakodate (WSH) 2011 conference at the Future University of Hakodate and the 6th International Workshop on Natural Computing (6th IWNC) at the University of Tokyo. WSH 2011 had been scheduled for March 15–16, 2011, but on March 11, just four days before the event was due to begin, the catastrophic Tohoku earthquake and tsunami struck, causing massive damage to the northeastern coast of Japan.

At the time of the earthquake, one of the co-chairs of WSH 2011, Suzuki Yasuhiro, had been attending a conference in the Tokyo Bay area (at the Nihon Kagaku Miraikan, or National Museum of Emerging Science and Innovation) and was promptly evacuated to a nearby emergency shelter. From the shelter, Prof. Suzuki sent the following email to Prof. T. Nakagaki, the principal organizer of WSH 2011.

From: Suzuki
To: Nakagaki
21:10, March 11, 2011

Dear Dr. Nakagaki,
I was in the Tokyo area when the earthquake hit and am now in a nearby shelter.
How is the current situation in Hakodate?
I do not suppose we will have to change the schedule for the winter school. What do you think?
All the best,
Yasuhiro SUZUKI

As time went by, it became clear that the damage from the tsunami was very serious indeed and that a further disaster, involving the No. 1 power plant at Fukushima, was developing. Almost all airline flights to Japan were cancelled and public transportation in the northeastern and Kanto (Tokyo) regions of Japan were in disarray, making attendance at the WSH impossible for foreign participants. Suzuki and Nakagaki discussed the situation and concluded that it was best to cancel the winter school as it had been planned, but hold a small workshop for whatever participants were able to come to Hakodate:
From: Nakagaki, Suzuki
To: All participants in the Winter School of Hakodate
10:31, March 13, 2011

—

Dear participants in the Winter School of Hakodate,

As all of you know, we have experienced a major catastrophe in Japan and continue to face unknown circumstances. Here in Hakodate, we have sustained damage near the centre of town, resulting in a suspension of service for most incoming railways. Fortunately, airways departing and arriving at the Hakodate airport are nearly on time (with some delays) and municipal transportation is running as usual.

In light of the larger regional emergency we did discuss outright cancellation of the Winter School conference, but since the event was scheduled for the last month of the financial year, full cancellation would likely cause problems for the management of grants and expenditures. Therefore, we have decided that it is best to cancel the planned conference but to hold a small workshop for any participants capable of making the journey to Hakodate as planned. To participants from abroad we have already announced that the workshop has been cancelled, as most flights into Japan are suspended and advisories against travelling to Japan are in effect until the situation stabilizes. If you cannot attend the smaller workshop due to transportation issues or other difficulties, please feel free to cancel.

As mentioned, the workshop will be small and will probably take the form of a casual seminar with a more flexible schedule. We kindly ask that any participants who have reserved a hotel room near the JR Hakodate station please confirm their reservations.

We extend our deepest sympathies to those suffering in any way due to the recent catastrophe and hope that family and friends are safe.

With kindest regards,
Nakagaki and Suzuki

Under these unforeseen circumstances, the workshop proceeded and was attended by a total of seven participants from various parts of Japan. Over the next few days, we became aware of the massive loss of life due related to the tsunami, and of the worsening situation at Fukushima. Nevertheless, while in attendance at the workshop, we tried to focus on the topics at hand: physics, chemistry, computer science, biology, and aesthetics. We were pleased to find the discussions intense and energetic, with particular interest focused on Prof. Akiba’s talk on modern arts from the point of view of natural computing. This talk was based on his book *A New Type of Aesthetics*, which proposed an understanding of aesthetics based on the mechanics of natural algorithms. So well received was this talk that it inspired the launch of a new research group in computational aesthetics in the Special Interest Group of Natural Computing (SIG-NAC), a part of the Japanese Society for Artificial Intelligence (JSAI).
SIG-NAC has been organized by the International Workshop on Natural Computing since 2006.

In the days following the workshop, Tokyo had become something of a “ghost town” due to the lack of electric power. Lighting for commercial uses in train stations and shopping areas was limited, many shops were closed altogether, and a significant number of people were stranded in the city centre.

Almost 12 months passed before we gathered again in Tokyo for the 6th International Workshop on Natural Computing (6th IWNC) at the University of Tokyo, from March 28 to 30, 2012. At this workshop, we were reacquainted with the participants at the WSH in Hakodate, and the computational aesthetics research group convened at a special lunch and symposium.

Because WSH 2011 and 6th IWNC are so closely related, we have decided to edit this special publication, merging papers presented at both the Winter School of Hakodate 2011 and the 6th International Workshop on Natural Computing. The publication includes a wide range of interesting new work.

In the area of natural computing, M. Hagiya and I. Kawamata present a position paper titled “Towards Co-evolution of Information, Life and Artificial Life”; and Y. Suzuki presents “Harnessing Nature for Computation.”

On the topic of computational aesthetics in natural computing, F. Akiba proposes “A Theory of Art Learned from Natural Computing” in which he points out the special significance of natural computing when considering computational aesthetics; M. Goan, K. Tsujita, T. Ishikawa, S. Takashima, S. Kihara, and K. Okazaki present the “Asynchronous Coordination of Plural Algorithms and Disconnected Logical Types in Ambient Space”; and J. Watanabe offers “Aesthetic Aspects of Technology-Mediated Self-Awareness Experience” along with several pieces of related artwork.

On the topic of synthetic biology in natural computing, N. Noman, L. Palafox, and Hitoshi Iba propose a “Method for the Reconstruction of Gene Regulatory Networks from Gene Expression Data Using a Decoupled Recurrent Neural Network Model”; L. Palafox, N. Noman, and H. Iba investigate the use of “Evolutionary Techniques for Inference in Gene Regulatory Networks”; and R. Sekine and M. Yamamura review the “Design and Control of Synthetic Biological Systems.”

We sincerely thank all contributors for their interesting work and their prompt support in editing this joint volume. We express special thanks to Prof. Masami Hagiya from the University of Tokyo on organizing 6th IWNC and A. Hofmann from Springer, Heidelberg, and to the staff at Springer Japan for this special publication. WSH 2011, 6th IWNC, and this publication were supported by...
Grant-in-Aid for Scientific Research on Innovative Areas No. 23119008 “Synthetic Biology for the Comprehension of Biomolecular Networks” and No. 24104002 “Molecular Robotics” and Grant-in-Aid for Scientific Research (B) No. 23300317 and (C) No. 24530106.

December 2012

Yasuhiro Suzuki
Toshiyuki Nakagaki
Co-Chairs WSH2011 and 6th IWNC
WSH 2011 and 6th IWNC were organized by the Special Interest Group of Natural Computing (SIGNAC) in the Japanese Society for Artificial Intelligence. The 6th IWNC was supported by Scientific Research on Innovative Areas “Synthetic Biology for the Comprehension of Biomolecular Networks”, Grant-in-Aid for Scientific Research on Innovative Areas.

Program Committee

Conference Chair of WSH2011:
Toshiyuki Nakagaki Future University Hakodate, Japan
Yasuhiro Suzuki Nagoya University, Japan

Conference Chair of 6th IWNC:
Yasuhiro Suzuki Nagoya University, Japan

Program Committee Members

Fuminori Akiba Nagoya University (Japan)
Daniela Besozzi University of Milan, Bicocca (Italy)
Alberto Castellini University of Verona (Italy)
Taichi Haruna Kobe University (Japan)
Hiroyuki Kitahata Chiba University (Japan)
Satoshi Kobayashi University of Electro-Communication (Japan)
Vincenzo Manca University of Verona (Italy)
Masami Hagiya University of Tokyo (Japan)
Giancarlo Mauri University of Milan, Bicocca (Italy)
Marion Oswald Vienna University of Technology (Austria)
Sigeru Sakurazawa Future University, Hakodate (Japan)
Junji Watanabe NTT Communication Science Laboratories (Japan)
Nozomu Yachie University of Toronto (Canada)
Takashi Yokomori Waseda University (Japan)
Table of Contents

Natural Computing

Ethological Response to Periodic Stimulation in *Chara* and *Blepharisma* .. 3
Itsuki Kunita, Sho Sato, Tetsu Saigusa, and Toshiyuki Nakagaki

Adaptive Path-Finding and Transport Network Formation by the Amoeba-Like Organism *Physarum* 14
Itsuki Kunita, Kazunori Yoshihara, Atsushi Tero, Kentaro Ito, Chiu Fan Lee, Mark D. Fricker, and Toshiyuki Nakagaki

Aggregate “Calculation” in Economic Phenomena: Distributions and Fluctuations .. 30
Yoshi Fujiwara

Towards Co-evolution of Information, Life and Artificial Life 39
Masami Hagiya and Ibuki Kawamata

Harness the Nature for Computation .. 49
Yasuhiro Suzuki

Things Theory of Art Should Learn from Natural Computing 71
Fuminori Akiba

Study on the Use of Evolutionary Techniques for Inference in Gene Regulatory Networks 82
Leon Palafox, Nasimul Noman, and Hitoshi Iba

Reconstruction of Gene Regulatory Networks from Gene Expression Data Using Decoupled Recurrent Neural Network Model 93
Nasimul Noman, Leon Palafox, and Hitoshi Iba

Design and Control of Synthetic Biological Systems 104
Ryoji Sekine and Masayuki Yamamura

Satellite Symposium on Computational Aesthetics

Preface: Natural Computing and Computational Aesthetics 117
Fuminori Akiba

The Significance of Natural Computing for Considering Computational Aesthetics of Nature .. 119
Fuminori Akiba
Perceiving the Gap: Asynchronous Coordination of Plural Algorithms and Disconnected Logical Types in Ambient Space 130
 Miki Goan, Katsuyoshi Tsujita, Takuma Ishikawa,
 Shinichi Takashima, Susumu Kihara, and Kenjiro Okazaki

Aesthetic Aspects of Technology-Mediated Self-awareness Experiences ... 148
 Junji Watanabe

Author Index ... 155
Part I
Natural Computing
Ethological Response to Periodic Stimulation in Chara and Blepharisma

Itsuki Kunita¹, Sho Sato², Tetsu Saigusa³⁴, and Toshiyuki Nakagaki¹⁵

¹ Future University Hakodate, 116-2 Kamedanakano-cho,
Hakodate, Hokkaido, Japan 041-8655
² School of Science, Department of Biological Sciences,
Hokkaido University, Sapporo, Hokkaido, Japan 060-0810
³ Department of Clinical Chemistry and Laboratory Medicine,
Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan 812-8582
⁴ Research on Dementia, Japan Foundation for Aging and Health,
Chita, Aichi, Japan 470-2101
⁵ JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan 102-0075

Abstract. To study how organism responds to periodic stimulation is meaningful since it may be an approach to an elementary capacity of time memory and learning in chronological events. We reported here that the ability of time memory found in true slime mold Physarum was also found in a protozoan ciliate, Blepharisma japonicum and a green plant Chara. Stimulation of temperature or light was repeated several times in a regular period, and the creature anticipated the next timing of stimulation. After the anticipatory behavior disappeared some time later, another single stimulation triggered recalling of periodicity of the previous stimulation. We discuss that the observed capacity is expected to be common in a range of species as the similar capacity has been reported in true slime mold Physarum. The observed responses were, however, dependent of individual of organism and a wide range of different responses was observed. We need an extensive study of both experimental characterization and mathematical modeling of ethological dynamics. abstract environment.

Keywords: Physarum, cell memory, subcellular computing, primitive intelligence.

1 Introduction

Organisms in the wild life are exposed to various kinds of stimulation from their environments. Stimulations are not merely single but repeated many times in time sequence¹⁴. The time sequence can be in general described by a function of time. Such a function is properly approximated by a finite Fourier series of trigonometric functions. To study response to stimulation of regular single frequency is elementary since response to each single frequency contributes to organization of complex behavior induced by realistic time sequence of stimulation in the wild. Although the original time sequence is much more complicated,
here we study the elementary character of organism behavior in response to regularly periodic stimulation.

In 2008, an interesting response to a periodic stimulation was reported in a true slime mold, plasmodium of *Physarum polycephalum*. Plasmodium showed a kind of time memory\[5\]. Stimulation of low temperature and low humidity were applied three times in a regular period, and the creature anticipated the next timing of stimulation. After the anticipatory behavior disappeared some time later, another single stimulation triggered recalling of periodicity of the previous stimulation. The authors proposed a possible mechanism of observed behavior. An idea to be emphasized is that these behaviors can be realized in dynamics for collective motion of intracellular chemical oscillators. The model equation is simple and generic. This finding may give a hint at evolutionary origin of capacity of time memory\[6\].

However, it is unclear whether the ability of time memory is specific to *Physarum* only or common to a range of different species. If it is common, the capacity is expected to be general more or less. So seeking for the similar ability in a different organism from *Physarum* is meaningful. We reported here the similar ability of time memory in a protozoan ciliate, *Blepharisma japonicum* and a green algae *Chara*.

In this study, in addition to involvement of those different species, three kinds of physical nature of stimulation, temperature, light and electric current, were tested. If the similar capacity is observed independently from the difference of physical nature of stimulation, the capacity can be organized somewhat in a central unit of information processing, rather than peripheral sensory activity.

Discussion was made on general features that was observed among species and among three kinds of stimulation. Lastly we examined if the model equation proposed in the previous paper\[5\] was still applicable to *Blepharisma* and *Chara*.

2 Method

2.1 Organism and Culture

A protozoan ciliate, *Blepharisma Japonicum* (wild type), was purchased from Kyoto Kagaku Co. (Kyoto, Japan). The ciliate was cultured at 24 °C in dark, in a Petri-dish (12 cm in the diameter) with the culture medium of 100 times diluted Chokley solution (0.1 g/l NaCl, 0.004 g/l KCl, 0.006 g/l CaCl$_2$, in the final concentration) and several grains of rice. As the medium was not sterilized, some bacteria and protozoa co-existed. About twenty to thirty organisms were collected from the culture dish, and put them in the smaller arena with disk-shape (10 mm in the diameter and 1 mm in the thickness), which was served for experimental observation. The arena was immersed in the water bath (24 °C in dark) and fixed in order to keep the temperature constant and stable (see Fig. 1b).